
https://www.vesvault.com

Page 1 Jim Zubov <jz@vesvault.com>, 2018

Vault Key Algorithm: ECDH

This document describes the elliptic curve integrated encryption schema (ECIES)

implemented in VESvault (https://vesvault.com), and available through VESvault public

APIs (https://ves.host).

REST API and libVES access:

 algo: string "ECDH"

 publicKey: PEM encoded EC public key (SPKI)

 privateKey: PEM encoded encrypted EC private key (PKCS #8). Recommended

default symmetric algorithm for PKCS #8: AES-256-CBC

 Recommended default EC domain parameters: secp521r1

Vault Entries for ECDH Vault Keys deploy the following implementation of ECIES:

Encrypting a Vault Entry data:

 Generate an ephemeral key E with the same parameters as the Vault Key V

 Calculate the ECDH secret agreement S using pub(V) and priv(E)

 Calculate ({K} || {IV} || {XXXX}) = SHA384(S), where K is 32 byte long, IV is 12

byte long, XXXX are unused last 4 bytes

 Produce a padded plaintext PP:

PP = {PL (1 byte)} || {P} || {ignored padding (PL bytes)}

where PL is the padding length byte (0 .. 255), recommended value is to align PP

to the next 32-byte boundary

 Encrypt the padded plaintext PP with AES-256-GCM, using the key K and the IV,

result in ciphertext C and 16-byte GMAC value G

 Generate the Vault Entry structure:

{DER SPKI pub(E)} || {C} || {16-byte G}

where "||" denotes concatenation. The result is to be passed as Base64 encoded

encData of the Vault Entry.

Decrypting a Vault Entry data:

 Base64 decode the encData, identify the length of pub(E) from DER framing,

extract the public key pub(E). (Throw an error if DER framing is not consistent or

if pub(E) is not a valid public EC key in the same domain as the Vault Key V)

 Immediately follows the ciphertext C, except for the last 16 bytes which constitute

GMAC G

https://vesvault.com/
https://ves.host/

https://www.vesvault.com

Page 2 Jim Zubov <jz@vesvault.com>, 2018

 Calculate the ECDH secret agreement S using pub(E) and the unlocked private

Vault Key priv(V)

 Calculate ({K} || {IV} || {XXXX}) = SHA384(S), where K is 32 byte long, IV is 12

byte long, XXXX are unused last 4 bytes

 Decrypt C using AES-256-GCM with the key K, and IV, result in the padded

plaintext PP

 Validate the GMAC value G, return an error if not valid

 Restore the plaintext P by stripping padding from PP:

{PL (1 byte)} || {P} || {ignored padding (PL bytes)}

 Return P

